

Key Lifecycle

- Create a key
- Pre-publish key in a DNSKEY set
- Sign data with the key
- Stop using key for signing
- Post-publish key in DNS
- Remove key from DNSKEY set
- Delete the key

Ø

Parameters for keys

- DNSSEC Security Algorithm
- For RSA keys, bit length and exponent are two additional choices

|4

15

6

DNSSEC Security Algorithm

- This is not the same as the key's cryptographic algorithm Algorithms numbered 5, 7, 8, and 10 are all RSA-based
- https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-algnumbers.xhtml#dns-sec-alg-numbers-1
- A DNSSEC Security Algorithm is

 Cryptographic Algorithm (DSA, RSA, ECDSA, GOST, ED25519, ED448)
 PLUS
 If needed, hashing algorithms (MD5, SHA-1, SHA-256, SHA
- 384, SHA-512)

0

• Co	untin	g KSK	for 1399 tota	I TLD zones
- :	1074	(# 8)	RSA-SHA256	
-	253	(#7)	RSA-SHA1-N	
-	36	(#10)	RSA-SHA512	
-	32	(# 5)	RSA-SHA1	
_	6	(#13)	ECDSA256SH	(Elliptic curve)
• Tw	o TL	Ds use	two algorithn	าร
 Six)s use l	ECDSA-256S	Н

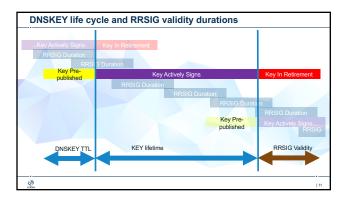
Which to use?

0

• The "trendy" thought is to use elliptic curve algorithms

|7

- The downside of elliptic curve algorithms

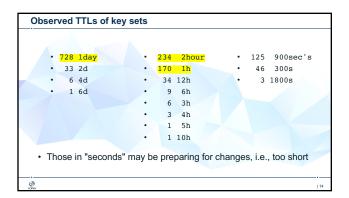

 Maybe too new, client software support may not be fully deployed
- The upside of elliptic curve algorithms
 Smaller messages and conceptually harder to "break"
- Trendy is not always "bad"

Bit lengths across all RSA-bas	ed keys
• KSK lengths: - 17 4096b - 1361 2048b - 86 2047b (tool bug) - 5 1280b - 1 1024b	 ZSK lengths: 1 4096b 160 2048b 536 1280b 874 1024b 9 1023b (tool bug) 5 1152b
	n KSK and ZSK sizes? is to be stronger than ZSK product sometimes "shorts" a key

Bit length trade off	
 Longer: Cryptographically s But more bytes in r We've never had a 	
	el

Why is pre-publishing needed?

- Cache gets a copy of the DNSKEY set at time to
- · Caches might get a copy of the SOA RR at time t1
- If, at t1, the SOA is signed with a new key, the DNSKEY set must already have it, or validation fails.
 "Validation fails" is not good.
- A cache won't refresh the key set until t0+the TTL of DNSKEY, so we pre-publish by at least the TTL value


| 12

Once a new key is ready

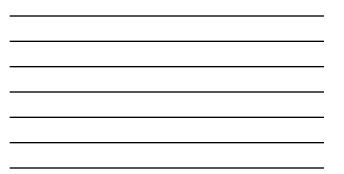
- For the first key, this doesn't matter
- For all new keys after the first, it will be important to preview the new key for some time
- The reason is DNS caching, older signatures will still be around, needing the old key

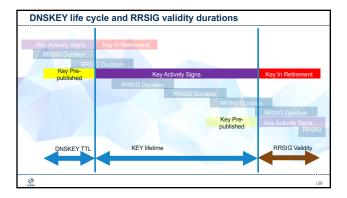
| 13

 The new key ought to be previewed for at least the amount of time in the DNSKEY set's TTL

Key Actively Signs	Key In Retirement			
RRSIG Duration				
	G Duration			
Key Pre-	Key A	ctively Signs		Key In Retirement
	RRSIG Duration			
		RRSIG Duration		
			RRSIG Duratio	
			Key Pre-	RRSIG Duration
			published	Key Actively Signs
				RRSIG
DNSKEY TTL	KEY lifetime			RRSIG Validity

How long should you use a key?


- Truth is, no one knows
- What do ccTLDs do : ZSKs?
- 1 month or 1 quarter (=3 months) each popular
 "forever" a few
- What do ccTLDs do : KSKs?
 - 1 year seems popular
 - "forever" a few, but hard to tell from data
- Two with no changes in more than 7 years


Ø

Roll or not?
 Theory people say you must
 Operators show you don't need to
But you have to know how
The question of rolling is more about practice than
necessity
- Operations: change of any kind is always risky
Exercise your contact with IANA
 I.e., roll the KSK enough so that "in a panic, it won't be an emergency"

| 18

Ø

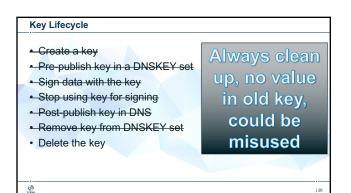
Retire	ement
	y signing engine can be told to " <i>not sign"</i> with a key t is in the DNSKEY set
— p	re-publish and retirement (post-publish)
but	volver caches may have older data signed with the key not have the key set. To validate, the public key is still eded
	natures by a key will disappear usually after the TTL bires for data, but TTL can vary
	etter way to end the "lifetime" of signatures to make e the signature's expiry is managed

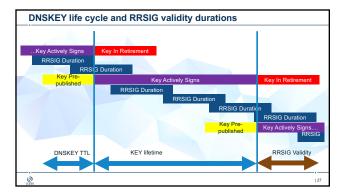
| 21

<u>enn</u>

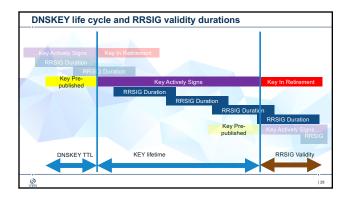
	<pre>; type covered by this record ; DNSSEC Security Algorithm ; Label count ; TTL of SOA ; expires 2020-09-11@19:42:41UTC ; starts 2020-08-11@19:42:41UTC ; signed by example's key 6853) ; signature value itself TY by using a fixed length and knowing</pre>
--	---

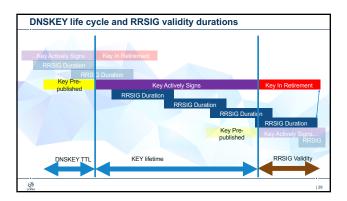
 Pre-publish key in a DNSKEY set Sign data with the key Stop using key for signing Post-publish key in DNS Size of DNSKE response, many operator 	Pre-publish key in a DNSKEY set Sign data with the key Stop using key for signing Post-publish key in DNS	Key Lifecycle	
Post-publish key in DNS many operato	Post-publish key in DNS Remove key from DNSKEY set forget this step	 Pre-publish key in a DNSKEY set Sign data with the key 	size of DNSKEY
	• Delete the key	Post-publish key in DNSRemove key from DNSKEY set	many operators forget this step

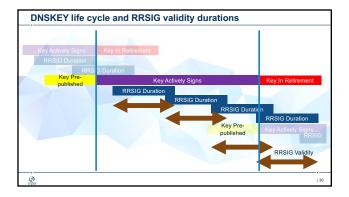

8


Observation/"Guess"

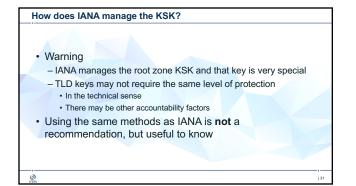
- A few times in history a ccTLD will have a large DNSKEY set
- Filled with retired (unused) keys
- Then the ccTLD will suffer a "failure"
- Never has this been due to the large size of the DNSKEY set

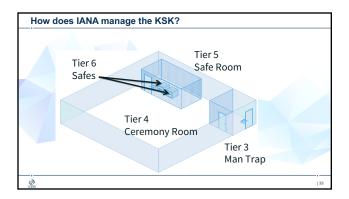

| 25


 But it seems like the large set is a symptom of poor monitoring and/or operations processes











How does IANA manage the KSK?

- Accessing the keys through these tiers is done in "ceremonies"
 - Four times a year

۲

- Multiple people (roles) are needed to access tiers
- External (to IANA) participants are required for public accountability

| 34

How does IANA manage the KSK?	
 For a ccTLD operation, all of this is probably "overkill" (too much) There may be other considerations than pure technical Be more flexible 	
	35

Engage with ICA	ANN – Thank You and Questions	
te Te	One World, One Internet	
Vis	it us at icann.org Email: champika.wijayatunga@icann.org	
	@icann	
f	facebook.com/icannorg	
	youtube.com/icannnews	
•	flickr.com/icann	
in	linkedin/company/icann	
in	slideshare/icannpresentations	
C	soundcloud/icann	
		12